Non-transcribed strand repair revealed in quiescent cells.

نویسنده

  • Jason H Bielas
چکیده

Stem cells, one of the progenitors of cancer, exist predominately in a quiescent state. Thus, understanding the mechanisms of DNA repair and mutagenesis in such arrested cells may help unravel the complex process of tumorigenesis. Two major nucleotide excision repair (NER) pathways are known to remove bulky physical or chemical lesions from DNA. Transcription-coupled repair (TCR) acts solely on the transcribed strand of expressed genes, while global genomic repair (GGR) is responsible for the ubiquitous repair of the genome. Indirectly, it has been shown that while TCR functions in quiescent cells GGR does not. To explicitly elucidate this phenomenon, we adapted a quantitative PCR (QPCR) assay to study UV-damage repair via TCR and GGR in quiescent and proliferating cells. We present evidence that repair of untranscribed silent regions of the genome and repair of the non-transcribed strand of active genes proceeds by two discrete mechanisms in quiescent cells; rather than by GGR, which was believed to encompass both. Thus, our findings suggest the existence of an alternate NER pathway in quiescent cells. The proposed subcategories of NER are as follows: (i) TCR, responsible for maintenance of transcribed strands; (ii) GGR, responsible for ubiquitous genome repair; and (iii) non-transcribed strand repair (NTSR), predominantly responsible for the repair of the NTS in arrested cells. In quiescent cells, it is evident that TCR and NTSR function and GGR are arrested. As a consequence, mutation accumulation at temporally silent genes and incomplete or imperfect repair of transcribed genes, in quiescent stem cells, may provide a source of cancer causing mutations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes

DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes afte...

متن کامل

Mutational analysis of a function of xeroderma pigmentosum group A (XPA) protein in strand-specific DNA repair.

To analyze the function of the xeroderma pigmentosum group A (XPA) protein in strand-specific DNA repair, we examined repair of UV-induced cyclobutane pyrimidine dimer (CPD) in transcribed and non-transcribed strands of the dihydrofolate reductase gene of xeroderma pigmentosum group A (XP-A) cell line (XP12ROSV) which was transfected with various types of mutant XPA cDNA. The transfectant overe...

متن کامل

Effects of genomic context and chromatin structure on transcription-coupled and global genomic repair in mammalian cells.

It has been long recognized that in mammalian cells, DNA damage is preferentially repaired in the transcribed strand of transcriptionally active genes. However, recently, we found that in Chinese hamster ovary (CHO) cells, UV-induced cyclobutane pyrimidine dimers (CPDs) are preferentially repaired in both the transcribed and the non-transcribed strand of exon 1 of the dihydrofolate reductase (D...

متن کامل

Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells.

Removal of ultraviolet light induced cyclobutane pyrimidine dimers (CPD) from active and inactive genes was analyzed in cells derived from patients suffering from the hereditary disease Cockayne's syndrome (CS) using strand specific probes. The results indicate that the defect in CS cells affects two levels of repair of lesions in active genes. Firstly, CS cells are deficient in selective repai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mutagenesis

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2006